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Abstract–A system has been developed to detect epileptic 
seizures in real-time during long-term EEG (LTEEG) 
monitoring. LTEEG is an important clinical service provided by 
the Neurology Department at Christchurch Hospital to 
investigate patients who have relatively infrequent but recurring 
seizures over extended periods. The detection algorithm looks 
for extended amplitude and frequency changes, calculated using 
basic signal-processing techniques, followed by a rule-based 
stage which compares time-dependent features against dynamic 
thresholds for each channel. Spatial context is used to 
discriminate eye artifacts. The system was tested on EEG data 
from 5 patients containing 44 epileptic seizures. The sensitivity 
and selectivity of the algorithm were 88.7% and 92.6% 
respectively.   
Keywords –-Epilepsy, Long-term EEG, Seizure detection 

I. INTRODUCTION 

Epilepsy is one of the most common of the neurological 
disorders, with a prevalence of about 1% of the population or 
50 million persons worldwide [1]. Long-term EEG (LTEEG) 
monitoring is used to closely monitor patients over extended 
periods who have relatively infrequent but recurring atypical 
�turns� or seizures.  LTEEG monitoring comprises continuous 
19-channel EEG and video recordings over several days. This 
allows the seizures to be �captured� for in-depth off-line 
analysis.  This information enables the neurophysiologist/ 
neurologist to determine whether or not such seizures are of 
epileptic origin and, if so, determine the type and location of 
the epileptogenic activity in the brain. Currently, the 
occurrence of a seizure can only be recorded by having the 
patient, a nurse, or a relative, push a seizure button which 
results in a pre-set period of EEG before and after the 
pressing of the seizure button being stored for viewing at 

some later stage.  If for any reason the seizure button is not 
pressed, the EEG relating to that seizure is lost. The ability to 
detect seizures automatically in the EEG will substantially 
reduce the loss of valuable data due to the manual seizure 
button not being pressed. 

Unlike spike-and-waves, a seizure is not primarily an 
electrographic pattern of characteristic morphology, but 
rather a behavioral event [2, 3] (e.g., Fig. 1 and 2). This wide-
ranging electrographic morphology and, in some cases, lack 
of clear EEG manifestations, can make some seizures very 
difficult to detect reliably.   

The aim of this project was to develop a real-time signal-
processing algorithm to detect epileptic bursts and seizures in 
the EEG. Several approaches have been developed 
elsewhere, with varying success, in attempts to automatically 
detect epileptiform activity and seizures in the EEG. In most 
of these, the tendency has been to look for extended 
amplitude and frequency changes rather than aiming to 
capture characteristic waveforms. Because of the widely 
varying morphology of seizures, we also chose to incorporate 
measures of extended amplitude and frequency changes, as 
central features in our multi-stage detection algorithm. 

II. METHODOLOGY 

Our seizure detector incorporates a sequence of steps, 
comparable with those in the manual process applied by the 
expert electroencephalographer (EEGer).  

To keep the algorithm as versatile as possible, the 
algorithm is largely montage independent. However, for 
optimum performance, the montage is best kept constant 
throughout a recording. 
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Fig. 1 . Clear electrographic pattern of a seizure detected by the algorithm in one channel of EEG#1.  Seizure starts at the vertical line. 
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Fig. 2. Electrographic pattern of seizure detected by the algorithm in one channel of EEG#5.  Seizure occurred between the vertical lines. 

A. Calculation of features 

Most seizures include some rhythmic discharge of high 
amplitude (low amplitude desynchronized EEG often marks 
their onset) and, at some time during their development, 
include paroxysmal rhythmic activity compared to the 
background, with frequencies varying from 3�20 Hz and 
relatively sustained in duration [2, 4, 5]. 

The algorithm calculates, the Average Dynamic Range 
(ADR) and the Frequency Vector (FV), representing  
amplitude and frequency features respectively, for every 
channel and over 256 sample epochs: 
ADR � Each epoch is sub-divided into segments of 64 data-
points, with overlaps of 32 data-points. In each segment the 
dynamic range (DR) (maximum - minimum) of the amplitude 
is calculated. The Average DR in an epoch is its ADR [6].  
FV � Because the EEG data contains only one sample 
function and not the whole ensemble, assumptions about the 
ergodicity and statistical properties are estimated from time 
(rather then ensemble) averages [7]. The periodogram of an 
epoch is estimated from finite segments. This method is 
known as weighted overlapped segment averaging: 

2 2

1

2

1( ') ( )

�( ) ( ') ( ') '

I

i
i

X f X f
I

S f W f f X f df

=
=

= −

∑

∫
  

The FV for each epoch is estimated from the power spectrum 
of each of its half-overlapping 64 point segments. Power 
spectra are calculated using a 64 point FFT. The mean of all 
15 power spectra is convoluted with a Hanning window 
function resulting in a vector representing the frequency 
features of an epoch.  

Temporal context information is used to make the 
algorithm insensitive to gain settings. The calculated features 
are stored in a moving window of 30 epochs representing the 
background of the EEG recording. The background is used to 
evaluate current epoch features against relative dynamic 
thresholds in the rule-based stage. To obtain a clear 
background, epochs containing high amplitude activity or 
large frequency changes, relative to the last 30 epochs, are 
rejected from the background.  

 
B. Using prior knowledge 

To determine if the calculated features of an epoch 
represent a seizure, the features are compared to the features 
of epochs containing definite seizures. The widely varying 
morphology of seizures makes it difficult to use static 
(absolute thresholds) comparison methods. Hence, relative 
dynamic thresholds are calculated: relative ADR (RADR) by 
dividing the ADR with the mean of the background, and the 
weighted distance function (DFV) between the FV of the 
current epoch and the mean of the background.  

Single-channel rules in the rule-based stage are 
determined empirically and in a sequence. The first rule 
separates the candidate seizure epochs from the raw data by 
comparing the RADR and DFV with thresholds. To determine 
these thresholds, scatter plots of RADRs and DFVs from 
epochs containing confirmed seizure and non-seizures were 
generated for the 5 EEGs (e.g., Fig. 3). 

The next rule discriminates seizures from large frequency 
changes in the common frequency bands (α and β). This is 
done by determining a direction coefficient (DC) from the FV 
of the current epoch. The final single-channel rule rejects 
muscle artifacts by determining the ratio of power in the high 
to the low frequency ranges.   

Prior to the final decision, spatial context information is 
added in some multi-channel rules to reject eye-movement 
and eye-flutter artifacts. An epoch is rejected if events occur 
only on frontal channels. An epoch is also rejected if the 
candidate seizure occurs on less then 4 channels. 
 
C. Test data 

Sixteen channels of EEG were recorded via several 
bipolar and referential montages from scalp electrodes placed 
according to the International 10-20 system. The amplified 
EEG was band-pass filtered between 0.5�70 Hz, sampled at 
200 Hz and digitized to 12 bits. 

The performance of the system was tested on EEGs (2.15 
h) containing epileptiform activity from five patients ranging 
5�65 years.  
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Fig. 3. Feature representation in EEG#4. ○ represents a seizure epoch. ▪ represents a non-seizure epoch. The plot shows difference in distribution between the 

non-seizure epochs and seizure epochs. Possible seizures are identified by having their ADR and FV features fall within the filled area

The data contained 71 true seizure events (TSEs), defined 
as epileptiform bursts of 1 s or longer and marked by at least 
2 of the 3 EEGers as definite or by one as definite and 2 as 
questionable. This data set was considered by one of the 
EEGers (GC) to contain a sufficient number and variety of 
electrographic patterns to adequately test the algorithm. 

 
D. Performance 

Each EEG was presented to the seizure detector. Measures of 
sensitivity, selectivity and false detection rate were calculated 
for each EEG as 

Total TPs

Total TSEs
Total TPs

Total TPs + Total FPs
Total FPs

False detection rate 
hour

Sensitivity

Selectivity

FPh

=

=

= =

   

 Where TP is a true positive detection (correct detection of 
a TSE) and FP is a false positive detection. If epileptiform 
events were detected which were not TSEs (such as spikes 
and sharp waves), they were removed from the analysis. 

III. RESULTS 

From the single-channel feature representation in Fig. 3 it 
can be seen that the weighted distance of the FV and the ADR 
in relation to the background give, on their own, quite 
acceptable discrimination between seizures and other activity 
in the EEG.  

Overall, the algorithm has a sensitivity of 88.7%, a 
selectivity of 92.6%, and an FPh of 2.3 (Table I). 

IV. DISCUSSION 

Most of the missed seizures occurred soon after a montage 
change, due to the relative dynamic thresholds not having 
settled. Ironically, a problem seen in EEG#2 was that too 
many seizures occurred over a relatively short period of time; 
this was due to the background used in the rule-based stage 
being inadequately estimated due to frequent rejection of 
epochs containing seizure activity. Because of the different 
montages in the recorded data, rejection of eye-blinks was not 
optimal and was the cause of about one third of the false 
detections in EEG#3. Another cause of the lower selectivity 

rate, in EEG#3 was an unstable background due to frequent 
spikes. 

Further improvements appear achievable in both the 
features and rule-based stages. A self-organising map in 
conjunction with fuzzy logic [6, 8] is a possibility for 
optimizing the rule-based stage. Wavelets [9] or non-linear 
complexity analysis [10] might also be used to calculate more 
discriminating features and, hence, improve both sensitivity 
and selectivity. 

V. CONCLUSION 

The idea of single-channel features to represent the EEG 
signal appears satisfactory for detection of epileptic bursts 
with a reasonable sensitivity and selectivity. Furthermore, the 
seizure detection algorithm has been translated from Matlab 
to C++ so as to operate in real-time. 

The seizure detection system presented in this paper has 
only just been clinically commissioned in the LTEEG service 
of the Department of Neurology. As this system records all 
EEG data on a single (referential) montage, at least slight 
improvements in performance are likely to be obtained 
immediately. Either way, automated seizure detection should 
lead to substantial improvements in the LTEEG service by 
reducing the loss of valuable seizure data through the seizure 
button not being pressed and through the detection of sub-
clinical seizures. 

 
TABLE I 

ALGORITHM'S PERFORMANCE  

EEG Age 
(years) 

Events Time 
(h:m.s) 

Sens. 
(%) 

Sel. 
 (%) 

FpH 

EEG#1 17 2 0:25.41 100  100 0 

EEG#2 46 51 0:26.15 92.2 100 0 

EEG#3 65 8 0:23.24 50.0 44.4 12.8 

EEG#4 12 9 0:26.18 100 100 0 

EEG#5 5 1 0:27.24 100 100 0 

TOTAL  71 2:09.02 88.7 92.6 2.3 
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